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In pursuing this approach, the standard finite-difference
expansions can be endowed with certain desirable qualita-This paper describes a class of explicit, Eulerian finite-difference

algorithms for solving the continuity equation which are built tive features such as stability and exact conservation. For
around a technique called ‘‘flux correction.’’ These flux-corrected finite-difference methods of a given order, typically the
transport (FCT) algorithms are of indeterminate order but yield real- first or second, the distinguishing qualitative features areistic, accurate results. In addition to the mass-conserving property

determined by the error terms. The crucial importance ofof most conventional algorithms, the FCT algorithms strictly main-
the form of the error becomes painfully apparent in regionstain the positivity of actual mass densities so steep gradients and

inviscid shocks are handled particularly well. This first paper concen- where « and/or d is of order unity, that is, in many problems
trates on a simple one-dimensional version of FCT utilizing SHASTA, of physical interest.
a new transport algorithm for the continuity equation, which is

In regions where the mass density r(x) and the flowdescribed in detail. Q 1973 Academic Press
velocity v(x) of Eq. (1) are smooth, most second-order
schemes such as Lax–Wendroff [3, 4] or leapfrog [1, 4–6]
treat the continuity equation quite adequately. In shocksINTRODUCTION
and steep gradients, however, d is of order unity. In regions

This paper proposes a new approach for numerically solv- of large velocity « is of order unity because one always
ing the continuity equation which yields physically reason- wants to take as large a timestep as possible. d is also of
able results even in circumstances where standard algo- order unity near sources of fluid, near sinks, and at inter-
rithms fail. This approach, called flux-corrected transport faces. In all these cases the truncation errors, which are
(FCT), leads to a class of Eulerian finite-difference algo- formally of asymptotic order «3 or «d 2, are as large as the
rithms which strictly enforce the nonnegative property of solution, so short-wavelength garbage arises in a few cycles.
realistic mass and energy densities. As a result steep gradi- Using higher-order numerical methods in these regions
ents and shocks can be handled particularly well. The does not help because the error terms at all orders are
method requires no special knowledge about the solution roughly the same size as the function itself.
and all internal grid points in the calculation are treated The FCT finite-difference technique described here [7]
identically. circumvents these steep-gradient problems by requiring an-

In most conventional approaches using an Eulerian fi- other physical property of the continuity equation, posi-
nite-difference grid [1, 2], the solution of tivity, insteadof vigorouslyadheringtoan asymptoticorder-

ing. The technique is also stable, mass conservative, and
­r/­t 5 2= · (rv) (1) essentially second order in regions where the concept of or-

der is meaningful. An FCT algorithm is of indeterminate
is approximated by expanding locally up through a given order near sharp gradients, the physical behavior of the con-
order in the two parameters tinuity equation at sharp gradients and discontinuities being

folded into the technique directly. Many FCT algorithms
are possible; some generalize quite conveniently to two and

d ; Udx dr

r ­x U ,

(2)
three dimensions. We will concentrate in this paper on a
particular one-dimensional explicit, Eulerian FCT algo-
rithm which we call SHASTA (Sharp And Smooth Trans-« ; v dt

­x
.

port Algorithm). Several severe computational examples
are given using SHASTA to illustrate the general principles
of FCT algorithms and their potentialities.Reprinted from Volume 11, Number 1, January 1973, pages 38–69.
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An FCT algorithm consists conceptually of two major
stages, a transport or convective stage (Stage I) followed
by an antidiffusive or corrective stage (Stage II). Both
stages are conservative and maintain positivity. Their inter-
action enables FCT algorithms to treat strong gradients and
shocks without the usual dispersively generated ripples.

Section I of this paper discusses the transport stage of
the particular FCT algorithm SHASTA. It has a simple
geometric interpretation which generalizes for two- and
three-dimensional applications. Section I also contains an
analysis of the transport stage. Section II is devoted to
the antidiffusion stage of the algorithm (Stage II) which
corrects numerical errors introduced in Stage I. The algo-
rithm for Stage II is given and an analysis of error in the
overall SHASTA-FCT algorithm is presented.

Section III treats the square-wave problem in one dimen-
sion using several conventional difference schemes as well
as the FCT technique introduced in this paper and imple-
mented in SHASTA. The concepts of dispersion and diffu-
sion used in Sections I and II are also applied to these
conventional schemes. This analysis allows a more com-
plete understanding of the new technique in light of the

FIG. 1. The transport stage of the 1 D FCT algorithm SHASTAproblems encountered in these earlier finite-difference
(Stage 1). Linear interpolations are used throughout so that mass is

schemes [1, 4, 8]. conserved and the density is nonnegative as long as uvdt/dxu , As.
Section IV extends the application of the new technique

to the full set of fluid equations. The SHASTA algorithm
is generalized to include equations of the momentum and

M0 5 O
j

rj dx. (3)pressure type as well as continuity equations. The results
of several shock and piston calculations are presented and
compared to other numerical methods of solving these

The short arrows at the grid points j and j 1 1 indicateproblems as reported in the literature [8]. We wish to
representative motions the fluid at these grid points mightemphasize here that the new algorithm employs no adjust-
undergo. In the examples and analysis of this paper weable artificial viscosity of the von Neumann [1, 9] type and
consider only uv dt/­xu , As so that no grid point can convectminimizes the undershoot–overshoot phenomena which
past the cell boundaries, indicated by vertical dashed linesplague other finite-difference methods [8]. In Section V
in Fig. 1(a), in one cycle. This restriction is probably notthe workings of the algorithm are described qualitatively
strictly necessary but ensures that no two grid points anand applications of the FCT algorithms are discussed.
cross in a single cycle, a necessary condition for this algo-
rithm. It aso simplifies the programming immensely.

We follow the motion of this fluid element for one time-
1. THE TRANSPORT STAGE (STAGE I) step in a Lagrangian sense. The two boundaries move by

amounts v1/2
j dt and v1/2

j11 dt. At the end of the cycle, theThe transport stage of the 1D SHASTA-FCT algorithm
fluid element has been convected and deformed as shownhas a simple geometric interpretation with extensions to
in Fig. 1(b). The height of each side of the trapezoid ismultidimensional calculations. Figure 1(a) shows the Eu-
varied in inverse proportion to the contraction or dilationlerian, uniformly spaced grid at the beginning of the cycle
in x of the base of the trapezoid. Thus(t 5 0). The densities hr0

j j are known and the velocities
hv1/2

j j are known at t 5 dt/2, half a timestep ahead (spatially
rp 5 r0

j11 dx/[dx 1 dt(v1/2
j11 2 v1/2

j )],staggered grids are not used). We seek the densities hr1
j j

at the end of the timestep when t 5 dt. Stage I of the and (4)
algorithm proceeds by considering individually each of the

rm 5 r0
j dx/[dx 1 dt(v1/2

j11 2 v1/2
j )].fluid-element trapezoids formed by connecting adjacent

density values with straight line segments. This piecewise
linear density profile is fully consistent with the definition It is clear from these formulas that the area of the fluid

element, and hence the mass, is fully conserved. It is alsoof the total mass,
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clear that the values rp and rm are always nonnegative if diffusion is the basis of FCT. Without the velocity-indepen-
dent diffusion, Eq. (8) is identical to the result obtainedall the hr0

j j are nonnegative initially and if
using the two-step Lax–Wendroff algorithm.

The treatment at the boundaries depends entirely onuv dt/dxu , As. (5)
the physical problem being simulated and will not be con-
sidered in detail here since the geometric and numericalThis ensures that the mass density, interpolated back onto
implementation of any particular boundary condition is athe original grid, is also nonnegative.
straight-forward generalization of the geometric interpre-The velocities used in Eqs. (4) are evaluated at the cen-
tation shown in Fig. 1.tered time but not the centered position with respect to

This SHASTA transport stage is conservative and non-the motion of the fluid at the grid points. Thus the transport
negative but has a very large, zeroth-order diffusion associ-is not fully second order. This minor defect is easily recti-
ated with it, as well as the usual second-order dispersionfied by using modified velocities found by linearly interpo-
and velocity-dependent diffusion. This strong diffusionlating on the grid. That is, we replace v1/2

j in Eqs. (4) [or
amounts to operating on the initial density profile hr0

j j inequivalently Eq. (7) below] with
the following way:

v1/2
j 5 [1 2 «j/2]v1/2

j 1 («j/2)v1/2
j11 (v1/2

j $ 0),
(6) r1

j 5 r0
j 1 h(r0

j11 2 2r0
j 1 r0

j21). (9)
v1/2

j 5 [1 2 «j/2]v1/2
j 1 («j/2)v1/2

j21 (v1/2
j , 0),

In the zero-velocity case the diffusion coefficient h is
where «j ; uv1/2

j dt/dxu. strictly h 5 0.125. In the case of nonzero velocities h is
Interpolation of the displaced fluid element back onto roughly 0.125 plus small velocity- and wavenumber-depen-

the original Eulerian gird is accomplished simply, as shown dent terms.
in Fig. 1(c). The area of the trapezoid lying to the right of Consider the slightly more general problem where « ;
the cell boundary [midway between the jth and the ( j 1 v dt/dx is constant, greater than zero, but less than 0.5. Let
1)st grid points] can be found by a simple linear interpola-
tion. This amount of fluid is assigned to grid point j 1 1. r0

j ; eikjdx, (10)
The remainder of the fluid in the trapezoid (residing to
the left of the cell boundary) is assigned to grid point j, where the cell index j is to be distinguished from i ;
since it lies in the jth cell. All of the fluid elements are Ï(21), k is the wavenumber, and the superscript is the
treated in the same way and independently. Thus, a portion timestep number. This initial condition corresponds to the
of the fluid element trapezoid which extended from j 2 1 physical solution
to j initially also gets assigned to grid point j. In a similar
way the cell j 1 1 also gets some of the fluid originating r(x, t) 5 eikxe2ikv(t2t0), (11)
between grid points j 1 1 and j 1 2.

The complete transport prescription which relates an infinite wave propagating to the right. The transport
hrn11

j j to hrn
j j is prescription Eq. (8) gives rise to an amplification coeffi-

cient for one cycle
rn11

j 5 AsQ2
2(rn

j21 2 rn
j ) 1 AsQ2

1(rn
j11 2 rn

j ) 1 (Q1 1 Q2)rn
j ,

(7) r1
j /r0

j 5 h1 2 (Af 1 «2)(1 2 cos k dx) 2 i« sin k dxj. (12)
Q6 5 SAs 7 v1/2

j
dt
dxD@F1 6 (v1/2

j61 2 v1/2
j )

dt
dxG .

The two velocity-dependent terms, proportional to «2 and
«, describe the phase propagation of the wave and include

The hv1/2
j j from Eqs. (6) may be used in Q6 for greater ac- small velocity- and wavenumber-dependent errors in both

curacy. phase and amplitude of the wave. Without the sin k dx
For a uniform velocity field this reduces to a simpler term, Eq. (12) looks like a pure three-point diffusion equa-

form, tion. Some of the «2/2 term is involved in the wave phase
change so the actual diffusion in Eq. (12) has a smaller
coefficient than (1/8 1 «2/2). Furthermore, the velocity-rn11

j 5 rn
j 2

«

2
(rn

j11 2 rn
j21) 1 S1

8
1

«2

2 D (rn
j11 2 2rn

j 1 rn
j21).

dependent part is also wavenumber dependent.
Using Eq. (12) we find the amplification factor

(8)

[r1
j /r0

j ]2 5 [1 2 Af(1 2 cos k dx)]2

(13)This latter formula is a simple two-sided differencing of
the convection term plus a strong diffusion. This strong 2 («2/2)(1 2 2«2)(1 2 cos k dx)2,
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which is always less than unity for u«u , As (the numerical
wave always decays in time and hence the transport scheme
is stable).

The analysis of the transport stage of SHASTA so far
has considered only the diffusion terms. The phase error
in Stage I is also a function of wavenumber k dx [here
identical with the parameter d defined by Eq. (2)] and
velocity «. Define xf(«, k) to be the position where the
imaginary part of r1

j goes to zero. xf is zero at t 5 0 for
both the exact solution (11) and the numerical solution

FIG. 2. Showing the non-sign-preserving tendencies of antidiffusion.
(10). Thus at t 5 dt the deviation, of xf(«, k) from the At gridpoint j a new maximum will be created by antidiffusion and the
correct value « dx measures the phase error as a function new minimum at j 1 1 will be negative.
of « and k. Setting Im(r1

j ) 5 0 in Eq. (12) with xf ; j dx gives

tan kxf 5 « sin k dx/[1 2 (Af 1 «2)(1 2 cos k dx)]. (14)
This would effectively remove the factor of 1/4 from Eq.
(12) in the « 5 0 limit. Appendix A treats the topic of

For long wavelengths this gives the relative phase error
implicit antidiffusion for FCT algorithms. The remainder
of this paper concentrates on explicit antidiffusion as pro-

(xf 2 « dx)/« dx > k2 dx2[(«2/6) 2 (1/24)] 1 O(k4 dx4). viding the simplest form of FCT.
Thus we use the following explicit antidiffusion equation(15)

in order to remove the net diffusion of Eqs. (7):
Equation (15) shows that the phases are second-order accu-

r1
j 5 r1

j 2 Ak(r1
j11 2 2r1

j 1 r1
j21). (18)rate and that the phase errors become fourth order when

u«u 5 As, the maximum allowable velocity here as discussed
Notice that this antidiffusion step adds only a real multi-earlier in connection with Eq. (4). The relative phase error

plicative factor to Eq. (12) and hence does not disturb thefor SHASTA, given by Eq. (15) for long and intermediate
phases. Thus after Fourier decomposition as before,wavelengths, is four times smaller than for the standard

algorithms shown in Tables I, II, and III. Equation (14)
r1

j 5 [1 1 Af(1 2 cos k dx)]r1
j . (19)also shows that the numerical phase velocity is smaller

than the actual transport velocity for all wavelengths. The
very shortest wavelength, k dx 5 f, does not propagate at The amplitude of the modified hr1

j j in terms of the initial
all according to Eq. (14). Section III of this paper compares hr0

j j is
these phase errors with those of other widely used methods
for solving the continuity equation [4]. ur1

j /r0
j u2 5 [1 2 ahA (1 2 cos k dx)2]2

2 («2/2)(1 2 2«2)(1 2 cos k dx)2[1 1 Af(1 2 cos k dx)]2.II. THE ANTIDIFFUSION STAGE (STAGE II)
(20)

As seen in the previous section, Stage I of the FCT
algorithm SHASTA has quite small phase errors for long The velocity-dependent term in Eq. (20) is small but a
and intermediate wavelengths but has a large diffusion small velocity-independent ‘‘residual diffusion’’ remains.
which is only weakly velocity dependent. In particular, for The antidiffusion, as given in Eq. (18), is certainly not
zero velocity Stage I reduces to the diffusion equation positive. The simple example of Fig. 2 shows why this is

so. The antidiffusion of Stage II, which is only intended
r1

j 5 r0
j 1 Ak(r0

j11 2 2r0
j 1 r0

j21). (16) to remove numerical errors introduced in Stage I, in fact
introduces additional numerical errors at grid points j and

Removal of this erroneous diffusion by applying an equal j 1 1 in the figure. New maxima and minima are formed
and opposite antidiffusion immediately suggests itself. where they are physically unreasonable. The new minimum
Equation (16) can be inverted in one dimension and solved, is actually negative.
since the resulting system is tridiagonal. Thus we could In removing the problem of nonpositivity it is useful
take the result of Stage I hr1

j j and find a corrected density to work with the mass fluxes directly. The antidiffusion
hr1

j j by solving the implicit equation [10] formula, Eq. (18), can be rewritten

r1
j 5 r1

j 2 fj11/2 1 fj21/2 , (21)r1
j 5 r1

j 1 Ak[r1
j11 2 2r1

j 1 r1
j21]. (17)
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TABLE Iwhere we have defined the antidiffusive mass fluxes as

Comparing the Amplification Factor Squared for
fj61/2 ; 6Ak(r1

j61 2 r1
j ). (22) Four Difference Schemes and Theory

Algorithm Order Square of the amplification factoraEquation (21) has two important properties:

(1) The antidiffusive fluxes fj11/2 and fj21/2 describe ex- Theory y 1
One-sided 1 1 2 2u«u(1 2 u«u)(1 2 cos kdx) Strong dampingplicit transfers of material.
Lax–Wendroff 2 1 2 («2 2 «4)(1 2 cos kdx)2 Weak damping(2) Equation (21) is strictly conservative regardless of
Leapfrog 2 1 (exact result) No dampingthe values of the fluxes h fj11/2j because every flux is added
SHASTA (FCT) ‘‘2’’ [1 2 ahA (1 2 cos kdx)2]2

once and subtracted once somewhere else (with the obvi- 2 («2/2)(1 2 2«2)(1 2 cos kdx)2

ous exception of boundary points). [1 1 Af(1 2 cos kdx)]2

The following qualitative limitation on the antidiffusive Note. Only the leapfrog method, of those shown, has no damping.
a Here « ; vdt/dx.mass fluxes suggests itself in order that the antidiffusion

be nonnegative:

The antidiffusion stage should generate no new maxima or minima
in the solution, nor should it accentuate already existing extrema.

III. THE SQUARE-WAVE TEST PROBLEMS
Such a prescription obviously maintains positivity. What
is not so obvious is how to make the limitation quantitative This section compares the one-dimensional FCT algo-
in a simple way without violating conservation. rithm given in the preceding section with three contempo-

This is done by correcting the antidiffusive mass fluxes. rary, explicit Eulerian, finite-difference schemes. They are
The h fj11/2j are limited term by term so that no antidiffusive- the ‘‘one-sided’’ first-order scheme [12], the second-order
flux transfer of mass can push the density value at any grid Lax–Wendroff two-step scheme, and the second-order
point beyond the density value at neighboring points. This ‘‘leapfrog’’ scheme. Tables I–III show the amplification
is the origin of the name ‘‘flux-corrected transport’’ and factors, phase behavior, and long-wavelength relative
the crux of the method. phase error of each algorithm applied to the Fourier har-

The corrected fluxes h f c
j11/2j are given by the formula monic with wavenumber k ; 2f/l. The correct theoretical

result is also shown for comparison. In this section we
f c

j11/2 5 sgn Dj11/2 maxh0, min(Dj21/2 sgn Dj11/2 ,
(23) assume, as earlier, that v is spatially and temporally con-

stant and define « ; v dt/dx. Then the four algorithms and‘‘Ak’’ uDj11/2u, Dj13/2 sgn Dj11/2)j,
the exact analytic formula are linear operations except for
the flux-correction part of Stage II. Each harmonic, aswhere
before, can be treated independently and should be a trav-
elling wave of constant amplitude moving with velocity vDj11/2 ; r1

j11 2 r1
j , (24)

(independent of k). Finite-difference algorithms in general
cause each harmonic to travel at the wrong velocity andand replace the fluxes h fj11/2j in Eq. (21). By means of a

few trials, the reader can readily convince himself that cause the amplitude to vary slowly in time.
Consider first Table I for the harmonic amplitudes. Thethis is the quantitative form of the qualitative prescription

given above. amplification factor is the relative change in the amplitude
of the Fourier harmonic during one computational cycle ofThe factor Ak of Eq. (18) has been replaced by ‘‘Ak’’. The

quotation marks indicate that more exact cancellation of er- the given algorithm. Theoretically the amplitude should re-
main constant for all time. The second-order leapfrogrors can be achieved if one expends a small amount of com-

putational effort by including at least rough approximations method alone achieves this result—not a great surprise
since the leapfrog method is reversible and also gives un-to the velocity- and wavenumber-dependent corrections

[11]. damped solutions to wave equations. The other three algo-
rithms give damped solutions with the shorter wavelengthsOther prescriptions are possible besides that of Eq. (23),

which we term ‘‘strong flux correction.’’ These modifica- decaying most rapidly. The one-sided method has particu-
larly strong diffusion. The Lax–Wendroff two-step methodtions are to be dealt with in a future article as their detailed

discussion is more complicated than this introductory arti- has much lower intrinsic damping, of order «2 and k4 dx4, but
clearly leapfrog is best by this criterion. In practical usage,cle warrants.

In the next section we compare this particular FCT algo- however, both the Lax–Wendroff and leapfrog algorithms
require a strong (perhaps local) diffusive smoothing term torithm with other more-or-less standard schemes. These

comparisons are made on the simplifying basis that keep dispersively generated ripples from pulling the density
negative near even moderate gradients and destroying the‘‘Ak’’ 5 0.125.
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TABLE III

The Long- and Intermediate-Wavelength Relative
Phase Errors are Compared

Algorithm Order Relative phase errorb

Theory y xf 2 vdt
vdt

5 0 (no error)

One-sided 1 xf 2 vdt
vdt

5 2S1
6

2
u«u
2

1
«2

3 D k2dx2 1 O(k4dx4)

Lax–Wendroff 2 xf 2 vdt
vdt

5 2S1
6

2
«2

6 D k2dx2 1 O(k4dx4)

Leapfrog 2 xf 2 vdt
vdt

5 2S1
6

2
«2

24D k2dx2 1 O(k4dx4)

SHASTA (FCT) ‘‘2’’ xf 2 vdt
vdt

5 2S 1
24

2
«2

6 D k2dx2 1 O(k4dx4)

a The FCT algorithm has a four-times smaller error, for small velocities,
than the other methods.

b Here « ; vdt/dx.

for the exact solution and for the four algorithms; xf is the
position of the Im(r) 5 0 point at the end of one cycle,
assuming Im(r) 5 0 at x 5 0 initially. The theoretical result

FIG. 3. Square-wave test comparisons at two times during the calcula-
is xf 5 v dt, independent of k. For long wavelengths, alltion. The solid line is the analytic solution, the dots are computed values.
expressions have the correct limit, as is to be expected.Computed values at the background level of 0.5 are not all plotted.
When k dx equals f (2 cells per wavelength), the phase
velocity vanishes for all four algorithms. As an example,
consider short wavelengths for which k dx 5 f/2 (four-

qualitative profile (see Fig. 3). Thus both Lax–Wendroff celled modes) and take « 5 As. Then
and leapfrog are more diffusive in practice than the new al-
gorithm, which guarantees nonnegative values in addition tan kxf 5 1, (theory)
because of the flux-correcting procedure. When velocity-
and wavenumber-dependent corrections to Eq. (18) are in- tan kxf 5 1, (one-sided)
cluded, or if the implicit antidiffusion is used, the residual

tan kxf 5 2/3, (Lax-Wendroff)diffusion of the new algorithm can be made still smaller.
Table II shows phase behavior as a function of « and k tan kxf 5 Ï(15)/7, (leapfrog)

tan kxf 5 1. (SHASTA)
TABLE II

SHASTA and the one-sided algorithm give the correctThe Single-Cycle Phase Shift for Four Difference
result in this special case. For shorter wavelengths all algo-Schemes and Theorya

rithms give basically nonsensical results.
Algorithm Order Phase shift xf in one cycleb

Table III shows the relative phase error for one cycle
for the four algorithms. The relative phase error is defined

Theory y kxf 5 k«dx[xf 5 vdt]
to be (xf 2 v dt)/v dt. All four algorithms have phase errors

One-sided 1 tan kxf 5
« sin kdx

[1 2 u«u(1 2 cos kdx)] quadratic in k dx. For most problems of interest the «2

Lax–Wendroff 2 tan kxf 5
« sin kdx

[1 2 «2(1 2 cos kdx)]
terms can be neglected since «2 ! 1. At long wavelengths

Leapfrog 2

the one-sided scheme has a term proportional to u«u which

tan kxf 5
[1 2 (1 2 («2/2) sin2 kdx)2]1/2

(1 2 («2/2) sin2 kdx)

SHASTA (FCT) ‘‘2’’

competes with the Ah term when « approaches As. This compe-

tan kxf 5
« sin kdx

[1 2 (1/4 1 «2)(1 2 cos kdx)]

tition effectively reduces the relative phase error only when
« is large.

Lax–Wendroff and leapfrog have comparable relative
phase errors at long and intermediate wavelength. The lasta The expressions are valid for all wavelengths with fixed velocity.

b Here « ; vdt/dx. line of Table III shows that the relative phase errors of
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the FCT algorithm are typically four times smaller than
those of the other methods for small velocity at long and
intermediate wavelengths. This result is very important.

Since the one-sided, first-order algorithm has acceptable
phase properties even though it is strongly diffusive, one
can apply a velocity-dependent antidiffusion with flux cor-
rection to reduce the diffusion problem. This has been
done in tests, with good results. A strong diffusion can
also be added to standard second-order transport algo-
rithms and then removed using the FCT prescription. This
generalization, which will be investigated in detail in a
future paper, is being tested on many transport algorithms
besides SHASTA. The SHASTA-FCT algorithm is the
best of the algorithms tested so far and therefore forms

FIG. 4. Comparison of the 1 D FCT algorithm SHASTA with andthe basis of this paper.
without k- and v-dependent corrections to the antidiffusion coefficient.

In summary, these tables show that the SHASTA-FCT Notice the improvement obtained even by the simple formulation ‘‘Ak’’ 5
algorithm is also superior to the other methods in regions 0.125 in comparison with the standard schemes of Fig. 3.
of x where the solutions are smooth and the flux corrections
unnecessary. The phase behavior of the FCT algorithm is
considerably better than for standard methods and the

a small additional diffusion to keep the solution from going
flux-limiting correction of Stage II also gives FCT excellent

negative. The leapfrog case was run with the same level
properties near sharp gradients.

of diffusion and looks appreciably better because the un-
To these results should be added the conclusions of

dershoots and overshoots are smaller. No undershoots are
K. W. Morton, who has compared seven different algo-

visible in the one-sided calculation because of the massive
rithms in somewhat greater detail than we have attempted

diffusion. The SHASTA one-dimensional FCT calculation
here [4]. These seven algorithms include most of the basic

shows remarkably good agreement with the exact solution
methods in common use today. In addition to the three

when the k-dependent corrections in the factor ‘‘Ak’’ are
basic methods discussed above, he includes treatments of

included approximately [11]. Figure 4 shows a comparison
the Crowley fourth-order method [13], the Crank–

of the SHASTA subroutine results for both the ‘‘Ak’’ cor-
Nicholson method [10], the Fromm extension of Lax–

rected calculation and the ‘‘Ak’’ 5 0.125 calculation. The
Wendroff [14], and the Roberts–Weiss fourth-order

correction enhances the antidiffusion coefficient in regions
method [5]. His paper reaches two major conclusions:

where short wavelengths predominate. The uncorrected
calculation has no overshoots or undershoots but residual(1) The leapfrog algorithm is the best of the generally

applicable basic methods. [FCT was not known at that fourth-order diffusion rounds the corners of the square
wave somewhat. Even this result, however, is obviouslytime.]

(2) Implicit and semi-implicit algorithms of the Crank– qualitatively far superior to the three basic methods shown
in Fig. 3.Nicholson type should be restricted to use in diffusion

equations where an explicit time differencing would result Figure 5 shows a further test of the 1D FCT algorithm.
In this test the continuity equation is solved analyticallyin a prohibitively small timestep to ensure numerical sta-

bility. for a time- and space-dependent density of the form

Computer calculations confirm the conclusions of our
r(x, t) 5 1 1 Ad sin[k1(v 2 v0t)] 1 (2t/3tmax) sin(k2x). (25)

analysis given above. Tests were performed on density
square waves traveling with constant velocity, All four

The corresponding velocity field is
algorithms of Tables I–III were tested with identical initial
conditions and identical timestep. The initial condition is v(x, t) 5 (1/r)[(1/3)v0hsin[k1(x 2 v0t)] 1 sin(k1v0t)j

(26)identical with Fig. 11(b); a comparison of the four algo-
rithms at two later times is shown in Fig. 3. The square 1 (2/3)(1/k2tmax)hcos(k2x) 2 1j],
wave is initially 20 cells wide with height 2.0. The back-
ground density is 0.5 and constant throughout the rest where v0 , k1 , k2 , and tmax are constants and where r(x, t)

is given by Eq. (25). This exact velocity was used in theof the system. The system is 100 cells long with periodic
boundary conditions. The velocity was chosen so that v dt/ SHASTA subroutine to solve the continuity equation nu-

merically for the density. Analytic and computed solutionsdx 5 0.2 for all cases. The analytic solution is shown as
the solid line. The Lax–Wendroff test was performed with for the density are plotted for comparison at three times.
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where

v* 5 (1 1 P/E)v, (30)

(­T/­t) 1 v(­T/­x) 5 (c 2 1)T(­v/­x). (31)

Here

P 5 rT (32)

(T has units of velocity squared), and

E 5 P/(c 2 1) 1 (1/2)rv2. (33)

These equations with c 5 5/3 were modeled using the
algorithm SHASTA, as described in Appendix B. Equa-
tion (31) for T is invalid near shocks, as it contains adiabatic
heating only, and so was not used. The basic test of the
algorithm consists of propagating a shock according to Eqs.
(27)–(33), studying the structure of the shock computed,
and verifying that the Rankine–Hugoniot relations hold.
In the absence of an explicit viscosity, shocks should
steepen until the shock front is only one grid space thick,FIG. 5. A test of SHASTA on a problem where new maxima and

minima appear physically. Mode 2 is excited initially using an analytic the best numerical resolution possible.
time- and space-dependent velocity and Mode 4 grows with time. The Initial conditions are set by specifying r1 , v1 , and T1 on
weak clipping phenomenon at maxima and minima is a result of the the right boundary; choosing a Mach number M1 ; and then
simple flux-limiting correction of Stage II.

calculating the downstream quantities r2 , v2 , and T2 from
the Rankine–Hugoniot relations across a shock. A small
velocity v0 is added to v to make the shock travel relative

This problem has a growing sinusoidal density component to the fixed grid. The initial shock position is chosen some-
and a traveling sinusoidal component. Their interaction where in the grid, then all physical variables are set to
creates a situation in which new maxima and minima are values r1 , v1 , T1 , or r2 , v2 , T2 depending on whether the
continually forming and moving physically. It shows that grid point is upstream or downstream from the initial shock
flux limiting, as performed in Stage II of the algorithm, position. The boundary conditions consist of holding r, v,
does not preclude the appearance and disappearance of and T fixed to these upstream and downstream values at
extrema in the solution when they occur physically. The the ends of the system. The energy E and pressure p are
deviations of p1% at the sharp maxima and minima of the chosen to be consistent with r1 , v1 , T1 , or r2 , v2 , T2 in
solution are the result of a ‘‘clipping’’ phenomenon caused the initial condition and at the boundaries. The problem
by strong flux correction. becomes nonphysical as soon as the shock reaches one of

the boundaries because of the fixed-boundary conditions.
Tables IV, V, and VI show the density, velocity, andIV. THE SHOCK TEST PROBLEMS

pressure jumps, respectively, in the neighborhood of two
The motivation for developing the FCT algorithms lies shocks, a Mach 5 shock and a Mach 20 shock. The grid-

in the desire to study strong dynamic phenomena in real point numbers are the corresponding x values because
fluids. Our evaluation of the new algorithm would thus be dx 5 1. Each shock has an added velocity v0 5 3.0 so that
incomplete without tests on a complete system of fluid at time t 5 5.0 they should have propagated 15 cells from
equations. To this end we now consider a one-dimensional, the initial position x 5 20.5, and at time t 5 20.0 they should
ideal inviscid hydrodynamic system, described self-consis- have propagated 60 cells. These exact shock positions are
tently by the following equations labeled by arrows (}) in the tables. The right and left

boundary values are also given for comparison. These are
the exact Rankine–Hugoniot values for the shocks. The(­r/­t) 1 (­/­x(rv) 5 0; (27)
pressure exhibits a jump of roughly 500 to 1 in the case of

(­/­t)(rv) 1 (­/­x)(rv2) 5 2(­P/­x); (28)
the Mach 20 shock and has a small undershoot associated
with the use of energy conservation in determining P on(­E/­t) 1 (­/­x)(v*E) 5 0; (29)
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TABLE IV is that the shock is slightly weaker at the end of the run
(the jump is reduced by about 2%).Density Profiles at and near the Shock Front for

By contrast, shocks propagated with Lax–Wendroff andMarch 5 and March 20 Shocksa

other conventional schemes using an artifical viscosity [8]
t 5 5.0 t 5 20.0 exhibit a spurious viscous broadening and large numerical

overshoots and undershoots can occur. Without this artifi-Mach 5 Mach 20 Mach 5 Mach 20
cial viscosity, however, even larger and more unphysicalGrid pt cycle 100 cycle 500 Grid pt cycle 400 cycle 2000
ripples can appear, driving temperature, energy, and even

Left b.c. 3.5714 3.9702 Left b.c. 3.5714 3.9702 density negative.
— — — — — — The SHASTA-FCT algorithm clearly allows propaga-
— — — — — — tion of shocks of minimum width (one cell transition— — — — — —

length) across an Eulerian grid as shown in Tables IV–VI.31 3.5701 3.9747 — — —
This is accomplished without generating large fluctuations32 3.5701 3.9747 — — —

33 3.5701 3.9753 — — — or undershoots upstream and overshoots downstream from
34 3.5700 3.9766 — — — the shock. While no explicit viscous term is used in the
35 3.4273 3.9766 — — —

} FCT method, the existence of a shock, it can be argued,36 1.1566 1.0600 — — —
betokens an ‘‘effective viscosity’’ arising out of the numer-37 0.9995 0.9988 76 3.5713 3.9700
ics so that shock widths always become about one cell, the38 0.9995 0.9988 77 3.5712 3.9702

39 0.9999 0.9999 78 3.5712 3.9707 best possible resolution. This effective numerical viscosity
40 1.0000 1.0001 79 3.5712 3.9707 should not be confused with the linear residual diffusion
41 1.0000 1.0000 80 3.4038 3.8200 shown in Eq. (20). Such a small smoothing as given by the— — — 81 1.1538 0.9978

}
— — — 82 0.9995 0.9978
— — — 83 0.9995 0.9982
— — — 84 0.9999 1.0001

TABLE V— — — 85 1.0000 1.0001
— — — 86 1.0000 1.0000 Velocity Profiles at and near the Shock Front for
— — — — — — Mach 5 and Mach 20 Shocksa

— — — — — —
— — — — — — t 5 5.0 t 5 20.0

Right b.c. 1.0000 1.0000 Right b.c. 1.0000 1.0000
Mach 5 Mach 20 Mach 5 Mach 20

a Arrows indicate positions to which the fronts should have propagated Grid pt cycle 100 cycle 500 Grid pt cycle 400 cycle 2000
according to theory at t 5 5.0 and t 5 20.0. For both examples initial
position x0 5 20.5 and velocity of propagation v0 5 3.0. Profiles to the Left b.c. 1.1926 23.5034 Left b.c. 1.1926 23.5034
left and right of the transition region are essentially flat and hence are — — — — — —
not shown. — — — — — —

— — — — — —
31 1.1946 23.5011 — — —
32 1.1946 23.4970 — — —

the upstream side of the shock. This can be removed by 33 1.1946 23.4959 — — —
using Eq. (31) upstream from the shock. 34 1.1946 23.4948 — — —

35 1.1760 23.6782 — — —
}

Small, barely discernible ripples propagate with the
36 22.8136 22.1524 — — —sound velocity from the jump. These are excited by passage
37 23.4742 22.2841 76 1.1926 23.5077of the shock transition over the grid. Otherwise there is
38 23.4568 22.2827 77 1.1917 23.5034

virtually no deviation from the correct, steep profiles. This 39 23.4551 22.2815 78 1.1918 23.5022
is as it should be, since inviscid fluids, in theory, exhibit 40 23.4548 22.2814 79 1.1918 23.5022

41 23.4549 22.2815 80 1.1835 24.0304
}

discontinuous shocks.
— — — 81 22.8391 22.2847If we replace the discontinuous jump in the initial condi-
— — — 82 23.4742 22.2849tions with a ramp [Fig. 6(a)], there is little change in the
— — — 83 23.4568 22.2839

results. After 10–20 cycles the front steepens up to a one- — — — 84 23.4551 22.2817
cell thickness [Fig. 6(b)] and the initial transients from — — — 85 23.4548 22.2818

— — — 86 23.4548 22.2819the ramp propagate away downstream. This is of course
— — — — — —demanded on physical grounds. The sound waves initially
— — — — — —excited by passage of the ramp over the grid die away [Fig.
— — — — — —

6(c)–(d)] and by cycle 1000 [Fig. 6(e)] the profile is that Right b.c. 23.4550 22.2820 Right b.c. 23.4550 22.2820
of a steep shock wave. The only departure from the results

a Initial conditions and format are those of Table IV.described in Table IV, other than that implied by v0 5 1,
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TABLE VI steps. The growth of the peak amplitude, for long time-
steps, is thus a measure of numerical instability.Pressure Profiles at and near the Shock Front for

The critical timestep, which can be seen to be betweenMach 5 and Mach 20 Shocksa

Cs dt/dx 5 1.2 and 1.3, is somewhat larger than found
t 5 5.0 t 5 20.0 for other finite-difference algorithms. This increase in the

permissible timestep occurs because flux correctionMach 5 Mach 20 Mach 5 Mach 20
strongly suppresses spurious new maxima and minimaGrid pt cycle 100 cycle 500 Grid pt cycle 400 cycle 2000
which occur first at short wavelength in numerical instabili-

Left b.c. 31.000 499.75 Left b.c. 31.000 499.75 ties. If one combines this condition,
— — — — — —
— — — — — — Cs dt/dx & 1.25,— — — — — —
31 30.966 499.25 — — —

with the condition for nonnegative densities,32 30.966 499.32 — — —
33 30.966 499.45 — — —
34 30.965 499.58 — — — v dt/dx , 0.5,
35 30.700 497.83 — — —

}
36 2.491 14.46 — — —
37 0.957 0.57 76 30.992 499.29
38 0.997 0.90 77 30.991 499.37
39 1.000 1.01 78 30.990 499.48
40 1.000 0.98 79 30.988 499.48
41 1.000 0.98 80 30.614 472.86

}
— — — 81 2.096 0.67
— — — 82 0.957 0.65
— — — 83 0.997 0.88
— — — 84 1.000 1.01
— — — 85 1.000 1.00
— — — 86 1.000 0.99
— — — — — —
— — — — — —
— — — — — —

Right b.c. 1.000 1.00 Right b.c. 1.000 1.00

a Initial conditions and format are those of the preceding tables. Note
that for the Mach 20 case, the pressure jumps by a factor of 500.

linear analysis leading to Eq. (20) could never give decent
treatment of shock-like phenomena. Rather it is the highly
nonlinear effect from Eq. (23) near a shock transition
which generates the effective viscosity. We feel this view
tells only a partial truth, however. From another viewpoint,
the completely inviscid fluid equations admit weak (discon-
tinuous) solutions. One can also view FCT as generating
these weak solutions up to the limit of grid resolution.

The FCT method can be driven unstable (as one would
expect because it is explicit) by taking a sufficiently large
timestep. Figure 7 shows a plot of numerical growth rate,
cN dt, versus the Courant number, Cs dt/dx, for numerical
instability. The question of numerical instability is greatly
complicated by the nonlinear flux correction demanded by
FCT so no complete theoretical analysis can be given here.
Instead we approach the problem empirically. A constant
temperature, constant density, stationary fluid is perturbed

FIG. 6. Evolution of a ramp initial condition into a strong shock. The
by a very small velocity impulse (1% of the sound speed ramp transient in density, velocity, and pressure leaves sound waves
Cs) in a single cell. The evolution of this system is then propagating away on the downstream side of the shock. The correct

Rankine–Hugoniot conditions are rapidly achieved.followed for many cycles using different numerical time-
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diffusion in SHASTA because the antidiffusion coefficient
has been taken simply as 0.125. Unlike shocks, contact
discontinuities have no natural tendency to steepen and
are smoothed by thermal conductivity and molecular diffu-
sion in real fluids. Steepeners [11] or implicit antidiffusion
(Appendix A) would reduce the extent of the contact dis-
continuity at the expense of extra computation. Lapidus
[16] compares several algorithms on a problem which con-
tains a contact discontinuity and widths vary from 10 to
20 cells compared to the p5 cell characteristic length of
the FCT contact discontinuity.

The shock, observed propagating to the right in Figs.
9(b) and 9(c), once again satisfies the Rankine–Hugoniot

FIG. 7. Growth rate of numerical instability, cN , versus Courant num-
relations appropriate to the velocity of propagation andber, Cs dt/dx, for the SHASTA-FCT algorithm. Flux limiting plus the

relatively nonlocal aspects of the overall algorithm (7 points are involved)
permit stable calculation with Courant numbers larger than unity. To
obtain the data of this figure d-function perturbations were applied to a
zero velocity, constant-density and -temperature fluid.

it can be seen that Mach 0.4 flows are integrated accurately
with no essential restriction due to the Courant–
Friedrichs–Lewy condition [15].

The final tests are modifications of the shock runs de-
scribed above. First, a supersonic flow is directed across the
system against a wall on the left end, defined by reflecting
boundary conditions. The fluid stopped at the wall piles
up and sloshes back [Fig. 8(a)]. The leading edge is a shock
which propagates to the right with a velocity determined
by the initial condition through the Rankine–Hugoniot
relations. Figure 8(b)–(d) shows the density and velocity
profiles moving away from the wall where a Mach 3.9 flow
has been stopped. The shock has Mach number M1 P
5.3, in excellent agreement with the theoretically predicted
value of 5.35. The shock develops and steepens properly
even in the absence of initialization with the correct
jump conditions.

We can also initiate a shock by using initial conditions
approximating the explosion of a diaphragm. At time t 5
0 the system has uniform density r 5 r1 , zero velocity, and
uniform temperature T 5 T1 to the left of the diaphragm. A
lower temperature and density, T2 and r2 , are initialized
to the right of the diaphragm. The results of one such
calculation are shown in Fig. 9 where T1/T2 5 60, r1/r2 5
8 initially.

Disturbances propagate to the left and the right. A shock
wave develops and propagates to the right followed by a
rarefaction wave propagating to the left. A contact discon-
tinuity (continuous pressure but discontinuous density and
temperature) lies between the shock and the rarefaction

FIG. 8. Supersonic piston calculation using SHASTA-FCT. The leftwave and represents the vestiges of the original discontinu-
boundary is established as a reflecting wall. Fluid sloshes against this wall

ity at the diaphragm. This contact discontinuity, indicated from the right. The only remnant of the initial transient (a) is a small
by arrows in Fig. 9, moves with the local fluid velocity. contact discontinuity or entropy-mode perturbation against the wall (d)

in which rT 5 const.It displays rounding on account of the residual explicit
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two and three dimensions. The basic concepts of FCT can
even be combined with other more or less standard trans-
port algorithms to obtain vastly improved results.

This paper has concentrated on the one-dimensional
version of FCT called SHASTA and has presented several
test-problem calculations. FCT algorithms consist of two
distinct stages, a first, or transport, stage and a second, flux-
corrected antidiffusion stage. The first stage of SHASTA
solves the continuity equation using a three-point formula
which has an appealing geometric interpretation. Stage I
of FCT algorithms in general is characterized by a large
numerical error in the form of a strong diffusion. The
antidiffusion of Stage II corrects these numerical errors
introduced during the transport stage.

The strong diffusion of Stage I, coupled with the antidif-
fusion and simple flux-correcting procedure of Stage II,
makes the FCT algorithms work. This flux correction
makes the overall algorithm nonnegative and stable and
yet reduces spurious numerical diffusion, the usual stabiliz-
ing element of most methods, to a very low level. The
condition that no new maxima or minima be generated by
the antidiffusion of Stage II seems to be the crucial factor.
Qualitatively, the diffusion introduced in Stage I must be
larger than any dispersive error. Then the local residual
diffusion, taken to be the diffusion of Stage I minus the
limited and hence smaller antidiffusion of Stage II, can
always be large enough, in principle, to cancel this anoma-
lous dispersion. That is, the FCT algorithms leave behind
a large diffusive flux locally which is equal and opposite
to the local dispersion error. Asymptotically both terms
are of zero order but combine to give an accurate solution
which is effectively second order.

This paper has developed the basic concepts of FCT
FIG. 9. Exploded diaphragm calculation using SHASTA-FCT. The via the one-dimensional algorithm SHASTA. Two other

formation of a right-moving shock by (c) is clearly shown. At this time papers in preparation will consider extensions of FCT to
(t 5 3, cycle 150) the contact discontinuity can be seen clearly (r varying, other transport algorithms, to multidimensional geome-
p constant) near cell 78. The fluctuations in density and pressure arise

tries, and to complex physical problems. A simple timestep-primarily from the very coarse resolution of the initial transients. The
split version using SHASTA for 2D problems and a fullyshock steepens as expected.
2D, optimized FCT algorithm have been developed. Re-
sults of actual calculations with these codes will be pre-
sented in these future papers, for the methods generalizeis thus an accurate representation of the weak solutions
easily to include MHD problems, cylindrical geometry,expected to the hydrodynamical equations. The value of
special treatments of axes [16], and complex multifluidc in these tests was Gd.
problems with nonvanishing transport and coupling coef-
ficients.V. CONCLUSIONS

We close this paper with a few timing considerations.
In the unoptimized simple 1D forms used for the testsThis paper presents a new class of Eulerian, finite-differ-

ence algorithms for solving continuity and continuity-like of Section III the Lax–Wendroff method, the leapfrog
method, and the one-sided method are all about the sameequations. These flux-corrected transport algorithms fea-

ture a second-order treatment of the convection and dila- speed, and the SHASTA subroutine is p2.5 times slower.
Additions of viscous terms for shocks, tests of negativity,tion terms which is nonnegative as well as conservative.

The method has the additional advantageous properties and smoothing of these other algorithms in practical calcu-
lations reduce this ratio considerably. In any case, whenof using a simple nonstaggered grid, of being very stable

and easily modularized, and of being easily extended to effective resolution is taken into account, the FCT algo-
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rithms regain this factor easily. In a shock problem, for Equation (A1) involves a simple tridiagonal matrix which
can be solved easily [1]. The quantity multiplied by ‘‘Ak’’ ininstance, comparable calculations using one of the basic

methods with a von Neumann viscosity would require Eq. (23) is then replaced by uD1
j11/2u, where

roughly 2–4 times more cells to achieve comparable resolu-
tion. Furthermore, addition of the viscosity is an extra D1

j11/2 ; r1
j11 2 r1

j . (A2)
expense. This required decrease in dx implies a correspond-
ing decrease in dt. Thus 4–16 times more grid-point time- The corrected fluxes from this modified form of Eq. (23)
steps would have to be performed in 1D using a standard are then used in Eq. (21) exactly as for explicit antidif-
method than would be required of the FCT algorithm. This fusion.
means, in practical calculations involving steep gradients, In order to compare amplification factors for the implicit
that a given error tolerance may actually be achieved by antidiffusion FCT algorithm with Eq. (20) for the explicit
FCT in 2–8 times less computer execution time. version, we again Fourier analyze to find [cf. Eq. (19)]

The savings in multidimensions are even more substan-
tial because the basic fluid equations become more compli- r1

j 5 r1
j /[1 2 Af(1 2 cos k dx)]. (A3)

cated. In the two-dimensional FCT fluid code, r, rvx , rvy ,
and E are integrated simultaneously and self-consistently When combined with Eq. (12) for the convection and diffu-
over a rectangular region. The implicit FCT technique has sion of the SHASTA transport stage, Eq. (A3) gives
been superimposed on an optimized Lax–Wendroff two-
step algorithm. Preliminary timings on the code show 0.6 r1

j

r0
j

5
[1 2 (1/4 1 «2)(1 2 cos k dx) 2 i« sin k dx]

[1 2 (1/4)(1 2 cos k dx)]
(A4)sec/cycle on a 40 3 40 grid. When the basic Lax–Wendroff

integration is performed alone, the code still requires 0.4
sec/cycle. This added expense for implicit FCT, a cost of

as the amplification factor for one cycle of the algorithm.about 50%, can be reduced considerably by using machine
The amplitude factor, for comparison with Eq. (20), islanguage to evaluate Eqs. (17) and (23). A rough count of

operations indicates that improvements of order 2.5 can
be expected. Thus FCT need add only 20% to the running Ur1

j

r0
j
U2

5 1 2
(«2/2)(1 2 2«2)(1 2 cos k dx)2

[1 2 (1/4)(1 2 cos k dx)]2 . (A5)
time of a fully optimized calculation.

Still more compelling arguments for the FCT approach
can be derived by considering strong-shock problems. The As the velocity « goes to zero, the modes are completely

undamped, as can be seen from Eq. (A5).use of a sufficiently large artificial viscosity to suppress
ripples at the shock in conventional algorithms usually A residual diffusion remains when « is nonzero, but is

exceedingly small at reasonable wavelengths. Figure 10introduces a severe diffusive stability restriction on the
timestep because the viscous diffusion dominates the flow. shows a comparison of the explicit version and this simple

implicit version of the FCT antidiffusion at time t 5 20Thus even on grids with the same dx, the FCT algorithms
may consume less computer time by taking longer time- (cycle 100) after the start of the square-wave problem.

Both solutions show residual rounding of the square wavesteps—and give a much better answer in the bargain.
but no undershoots or overshoots. Figure 11 shows the
same test comparison where the velocity is set to zero

APPENDIX A rather than unity. In this case the implicit antidiffusion,
even with strong flux correction, gives exactly the correctThis appendix treats implicit antidiffusion in greater de-
stationary result while the residual diffusion in the explicittail. A minor shortcoming of the explicit antidiffusion for-
case shows up noticeably. Even in the case of Fig. 10, wheremula is that the residual velocity-independent diffusion
v is nonzero, the implicit treatment shows somewhat lessdamps short wavelengths even when the velocity of flow
residual rounding.is zero. A stationary density structure is not exactly time

These features of the implicit FCT antidiffusion can beindependent. To alleviate this problem one expends addi-
quite important in problems where a disturbance propa-tional computational effort and uses the implicit form of
gates into a stationary but nonuniform region. In the ab-the antidiffusion formula, Eq. (17).
sence of the disturbance the profile in the stationary regionThe implicit antidiffusion can make FCT dissipationless
should not change. The implicit approach achieves this re-while still retaining the fourfold improvement in relative
quirement.phase error noted in Section III. To apply implicit antidiffu-

The same requirement could be achieved in the explicitsion, we calculate hrjj which satisfies
approach by adding a velocity dependent diffusion rather
than a velocity independent diffusion. This diffusion coef-

r1
j 5 r1

j 2 Ak(r1
j11 2 2r1

j 1 rj21). (A1) ficient could be chosen just large enough to insure positivity
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Aj 5 AsQ2
1( j)[Aj11 2 Aj] 2 AsQ2

2( j)[Aj 2 Aj21]

1 Q1( j)[Aj 1 (Bj11 2 Bj)(dt/dx)]

1 Q2( j)[Aj 1 (Bj 2 Bj21)(dt/dx)], (B4)

Dj11/2 5Aj11 2Aj , (B5)

f c
j11/2 5 sgn Dj11/2 maxh0, min[Dj11/2 sgn Dj11/2 ,

(B6)Ak uDj11/2u, Dj13/2 sgn Dj11/2]j,

(B7)Anew
j 5 Aj 2 ( f c

j11/2 2 f c
j21/2).

Equations (B2)–(B7) hold for all interior j. Let us write
symbolically

hAnew
j j 5 S(hAjj, hUjj, hBjj, dt/dx) (B8)

for the operation of SHASTA-FCT to advance hAjj by a
time dt.

Using this notation, we now give the sequence of opera-
tions for advancing the dynamical variables hr0

j , h(rv)0
j j,

FIG. 10. Comparison of simple explicit (‘‘Ak’’ 5 0.125) and simple hE 0
j j (density, momentum density, and energy density, re-

implicit versions of FCT antidiffusion using the SHASTA transport algo-
spectively) of the self-consistent fluid equations, Eqs. (27)–rithm. The velocity is unity and « 5 0.2. The time is t 5 20 (cycle 5

100). The implicit FCT antidiffusion is marginally better than the explicit
version and both are far better than the standard schemes of Fig. 5.

locally and the same level of antidiffusion could be applied
in Stage II. Then, when v 5 0, the diffusion coefficient
could be chosen to be zero.

APPENDIX B

We first compile the full set of equations defining the
SHASTA-FCT algorithm in finite-difference form as used
in the computational examples of Sections III. We then
list the set of fluid equations as finite differenced to solve
the hydrodynamic problems of Section IV.

The general continuity equation with forcing term,

­A/­t 5 2(­/­x)(AU) 2 ­B/­x, (B1)

is to be solved on a finite-difference mesh of cell size dx
to advance hAjj from time t to time t 1 dt using hUjj and
hBjj. The conservative B term will be used as the pressure
to solve the momentum equation. The SHASTA-FCT al-
gorithm is defined as follows:

FIG. 11. Same comparison as Fig. 10 except the flow velocity is zero.
The solid line again shows the correct solution. Here the implicit FCT«j 5 Uj dt/dx, (B2)
algorithm (b) gives the exact answer whereas the somewhat simpler
explicit method still has a small residual smoothing.Q6( j) 5 (1/2 7 «j)/[1 6 («j11 2 «j)] (B3)
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2. B. Alder, S. Fernbach, and M. Rotenberg, Eds., Methods in Computa-(30) and Eq. (33), one timestep. The new values we denote
tional Physics, Vol. 3, Fundamental Methods in Hydrodynamics (Aca-by hr1

j j, h(rv)1
j j, and hE 1

j j. The algorithm used is
demic Press, New York, 1964).

3. P. D. Lax and B. Wendroff, Systems of conservation laws, Comm.v0
j 5 (rv)0

j /r0
j , (B9) Pure. Appl. Math. 13, 217 (1960).

4. K. W. Morton, Stability and convergence in fluid flow problems, Proc.P0
j 5 (c 2 1)[E 0

j 2 As(rv)0
j v0

j ], (B10)
Roy. Soc. (London) A 323, 237 (1971).

5. K. V. Roberts and N. O. Weiss, Convective difference schemes, Math.v*0
j 5 v0

j (E 0
j 1 P0

j )/E 0
j , (B11)

Comp. 20, 27 (1966).

6. G. J. Haltiner, Numerical Weather Prediction, Naval Weather Re-hr1/2
j j 5 S(hr0

j j, hv0
j j, h0j, dt/2dx), (B12)

search Facility Report NWRF 30-0768-142 (July 1968).
h(rv)1/2

j j 5 S(h(rv)0
j j, hv0

j j, hP0
j j, dt/2dx), (B13) 7. J. P. Boris, A fluid transport algorithm that works, in Proceedings of

the Seminar Course on Computing as a Language of Physics, 2–20
hE 1/2

j j 5 S(hE 0
j j, hv*0

j j, h0j, dt/2dx), (B14) August 1971 (International Centre for Theoretical Physics, Trieste,
Italy).

v1/2
j 5 (rv)1/2

j /r1/2
j , (B15) 8. A. F. Emergy, An evaluation of several differencing methods for

inviscid fluid flow problems, J. Comput. Phys. 2, 306 (1968).P 1/2
j 5 (c 2 1)[E 1/2

j 2 As(rv)1/2
j v1/2

j ], (B16)
9. J. Von Neumann and R. D. Richtmyer, A method for the numerical

calculations of hydrodynamical shocks, J. Appl. Phys. 21, 232 (1950).v*1/2
j 5 v1/2

j (E 1/2
j 1 P1/2

j )/E 1/2
j , (B17)

10. J. Crank and P. Nicholson, A practical method for numerical integra-
tion of solutions of partial differential equations of heat conductionhr1

j j 5 S(hr0
j j, hv1/2

j j, h0j, dt/dx), (B18)
type, Proc. Cambridge Philos. Soc. 43, 50 (1947).

h(rv)1
j j 5 S(h(rv)0

j j, hv1/2
j j, hP1/2

j j, dt/dx), (B19) 11. In the square wave tests of FCT (next section) we define r 5

(rminrmax)1/2 and set
hE 1

j j 5 S(hE 0
j j, hv*1/2

j j, h0j, dt/dx). (B20)
‘‘Ak 5 0.125[1 1 (1 2 0.25r/uDj11/2u)2], uDj11/2u $ 0.25r,
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